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ABSTRACT 

The launch vehicle is idealized a s  a one-dimensional s t ructure  consisting of a main 
beam to which several  flexible branches a r e  attached. 
restrained main beam and the cantilevered branches a r e  determined. 
proach is then employed in which the displacement of the vehicle is expressed as the su- 
perposition of a finite number of f ree- f ree  normal modes of the main beam and canti- 
lever normal modes of the branches. 
equations of motion in matr ix  form, and an iterative method of solution is included for  
completeness. 

The normal modes of both the un- 
An energy ap- 

Lagrange's equations a r e  then used to der ive the 
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METHOD FOR DETERMINING NORMAL MODES AND FREQUENCIES OF 

A LAUNCH VEHICLE UTILIZING ITS COMPONENT NORMAL MODES 

by James D. McAleese 

Lewis Research Center  

SUMMARY 

An analytical method is presented for determining the natural frequencies and lat- 
eral  mode shapes of an idealized launch vehicle, which is envisioned as a one- 
dimensional structure consisting of a main beam to which several flexible branches are 
attached. Engines and sloshing masses are also included. The vehicle may be free or 
constrained by translational and rotational constraining springs. 

An energy approach is employed in which the displacement shape of the system is 
expressed as the superposition of a finite number of free-free normal modes of the main 
beam and cantilever normal modes of the branches. The choice of these modes as as- 
sumed displacement functions provides a simple, straightforward method of incorporating 
branches, engines, and sloshing masses in the analysis; many terms of the energy ex- 
pressions are eliminated and those terms that remain are easily evaluated. 
equations are then utilized to develop the equations of motion in matrix form, and an 
iterative method of solution is included for completeness. 

Lagrange's 

INTRODUCTION 

In some instances, the launch vehicle can be appropriately idealized as a nonuniform 
Timoshenko beam for purposes of studying its lateral dynamic characteristics. In other 
cases, this model may not realistically represent the launch vehicle system. 
stance, when large structural components are cantilevered within other portions of the 
vehicle, it becomes necessary to include them as flexible branches. An example of this 
is a spacecraft enclosed within a protective nose fairing, or  an upper-stage engine sup- 
port structure extending into the interstage adapter. 
becomes especially significant when clearance problems are anticipated or when the dy- 
namic loads within the branch itself must be evaluated. It may also be desirable to in- 

For in- 

The inclusion of these branches 



clude the inertial effect of the engines, which are generally represented as constrained 
rigid bodies, and the effect of sloshing propellants. 

The lateral normal modes of the launch vehicle system have been determined by a 
variety of methods. For  example, in references 1 and 2, the main launch vehicle is 
analyzed as a nonuniform Timoshenko beam by the Myklestad method and the finite- 
element force method, respectively. In references 3 and 4, the vehicle is analyzed as 
a nonuniform Timoshenko branch beam system including engine effects by the Stodola 
method and the finite-element stiffness method, respectively. 

In the present analysis, the effects of flexible branches, swiveling engines, slosh- 
ing masses, and constraining springs can be incorporated into the system in a straight- 
forward manner. The normal modes of the unrestrained main beam and the normal 
modes of the cantilevered branches must f irst  be determined. The displacement of 
the vehicle is then expressed as the superposition of rigid body displacement modes, 
normal modes of the free-free main beam, and cantilever normal modes of the branches. 
The energy expression is then formulated, and Lagrange's equations are applied to de- 
rive the differential equations of motion. The principle of utilizing the uncoupled nor- 
mal modes of the system is not new; in reference 5, Scanlan proposes its application to 
airplanes, and Hurty (ref. 6), presents a general procedure for incorporating component 
modes in the finite-element displacement approach. The new feature in this analysis is 
the choice of this particular set  of assumed modes to describe the normal modes of a 
launch vehicle system. This choice is logical when the nature of the connection of the 
branches in an actual launch vehicle is considered. 

of the branches can be developed by the most suitable method and then easily incorpo- 
rated in the system in terms of their modal characteristics. For example, a payload 
consisting of trusses and concentrated masses might be analyzed by the finite-element 
stiffness method and then coupled to the system by use of its cantilever normal modes, 
natural frequencies, and generalized masses. Also, describing a component in terms 
of its dynamic modes allows dynamic test data to be incorporated in the analysis. 

The present approach is attractive because the normal modes of the main beam o r  

SYMBOLS 

A cross-sectional area of launch vehicle 

effective shear area 

shear stiffness of ith beam 

distance from attachment point of ith beam to its center of gravity (i > 0) 

AS 

(AsG) 

Bi 

i 
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qOR 
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distance from center of gravity of system to center of gravity of main beam 

Young’ s modulus 

bending stiffness of ith beam 

total number of generalized coordinates used to describe motion of system 

number of elastic generalized coordinates used to describe motion of ith beam 

shear modulus 

area moment of inertia of cross section 

mass moment of inertia of engine on ith beam about center of gravity of engine 

mass moment of inertia of ith branch about its attachment point (i > 0) 

mass moment of inertia of main beam %bout its center of gravity 

stiffness of rotational spring at gimbal point of engine on ith beam 

stiffness of rth sloshing spring 

stiffness of jth translational constraintng spring 

stiffness of jth rotational constraining spring 

total number of branch beams (does not include main beam) 

displacement of rth sloshing mass relative to equilibrium position 

displacement of rth sloshing mass relative to tank walls 

modal moment at clamped end of ith branch for nth uncoupled mode 

mass of engine on ith beam 

mass of ith beam 

mass of rth sloshing mass 

modal shear at clamped end of ith branch for nth uncoupled mode 

( i = l ,  2, . . . , k; n = l ,  2, . . . , fi) 

(i = 1, 2, . . . , k; n = 1, 2, . . . , fi) 
generalized coordinate describing participation of nth uncoupled mode of i th 

beam in free vibration of system (i = 0, 1, . . . , k; n = 1, 2, . . . 7 fi) 

generalized coordinate describing rigid body rotation 

generalized coordinate describing rigid body translation 

kinetic energy of launch vehicle 

potential energy of launch vehicle 
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longitudinal coordinate measured relative to center of gravity of system 

coordinate of gimbal point of engine on ith beam 

coordinate of attachment point of ith beam (i > 0) 

coordinate of rth sloshing mass 

coordinate of connection point of jth translational constraining spring 

coordinate of connection point of jth rotational constraining spring 

lateral displacement function of ith beam relative to equilibrium position 

angular rotation of engine on ith beam relative to bending slope at gimbal point 

angular rotation of engine on ith beam relative to equilibrium position 

distance from gimbal point of engine on ith beam to center of gravity of engine 

bending slope function of ith beam relative to equilibrium position 

displacement of center of gravity of swiveling engine on ith beam 

generalized mass of nth uncoupled mode of ith beam (i = 0, 1, . . . , k; 

generalized mass of sth mode of vehicle 

mass density 

mass per unit length of ith beam 

mass moment of inertia per unit length of ith beam 

displacement function of nth uncoupled mode of ith beam (i = 0, 1, . . . , k; 

n = l , .  . . 3 fi) 

n = 1, 2, . . . , fi) 
rigid body rotation displacement function 

rigid body translation displacement function 

bending slope function of nth uncoupled mode of ith beam (i = 0, 1, . . . , k; 
n = 1, 2, . . . , fi) 

rigid body rotation slope function 

rigid body translation slope function 

natural frequency of nth uncoupled mode of ith beam, rad/sec 

natural frequency of sth mode of vehicle 

( i = O ,  1 , .  . . , k; n = l , .  . . 7 fi) 

Matrices: 

[AI stiff ness matrix 
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[B] inertia matrix 

[I]  unit matrix 

{ q} 

Subscripts: 

i 

n, p 

Superscripts: 

column matrix of generalized coordinates 

beams of system (i = 0, 1, 2, . . . , k) (main beam i = 0, branch beam i > 0) 

uncoupled modes of beam (n = 1, 2, . . . , fi) 

differentiation with respect to time 

differentiation with respect to x 
? 

OUTLINE OF THEORETICAL DERIVATION 

The displacement of the launch vehicle is expressed as the superposition of the 
rigid body translation and rotation of the system, and a finite number of free-free modes 
of the main beam and cantilever modes of the branches. The amplitude of each of these 
assumed modes is governed by a generalized coordinate. The engines, which can gen- 
erally be considered as rigid in comparison with the supporting structure, are repre- 
sented as rigid bodies pinned at the gimbal point and constrained by rotational springs, 
as shown in figure 1. If the dynamic effects of sloshing propellants are to be included, 
the usual practice (ref. 7) is to introduce a mechanical analogy (spring mass o r  pendu- 
lum) into the system. In this analysis, sloshing is represented as a spring mass. For 
the case of a constrained launch vehicle, translational and rotational constraining 
springs may be attached to the main beam. In all, the total number of generalized co- 
ordinates is equal to the number of assumed modes plus the number of engines and 
sloshing masses. 

The kinetic and potential energies of the system T and U, respectively, are then 
expressed in terms of the assumed deflections and generalized coordinates. In the de- 
velopment of the energy expressions, both the main beam and the branches are treated 
as Timoshenko beams, but this is merely for ease of notation and does not affect the 
final equations. The fact that the assumed elastic modes are normal modes of specific 
components, and, hence, satisfy the orthogonality relations, eliminates many terms 
from the energy expressions. The remaining terms consist of physical and modal char- 
acteristics of the components; that is, mass, length, generalized mass, generalized 
forces, and natural frequencies. Applying Lagrange's equations yields the required dif- 
ferential equations of motion, the number of which is equal to the number of generalized 
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coordinates. The equations in matrix form appear as 

[ B ] m  +[A]{qI = (01 

educed to the eigenvalue equation If harmonic motion is assumed, this equation is . 

which is then solved for the natural frequencies and associated mode shapes by an iter- 
ative method. 

Coo r di n a t e System 

As shown in figure 2, the launch vehicle configuration is described relative to a 
fixed x, y-coordinate system. The longitudinal coordinate x is measured relative to the 
center of gravity of the system. 

The lateral displacement is assumed to be representable as the superposition of 
rigid body modes and uncoupled normal modes of the components. Following this ap- 

Payload branch / i y'cp 

p x r  
- x1 

Figure 2. - Coordinate system. 
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proach, the deflection of the main beam yo is expressed as the superposition of a rigid 
body translation mode qOT = 1; a rigid body rotation mode qOR = x; and the free-free 

normal modes of the main beam pol, qO2, . . . 9 VOf ; that is, 
0 

where the coefficients qOT, qOR, qol, . . . , qOfO are generalized coordinates that de- 

scribe the participation of the rigid body modes and free-free modes in the natural made 
of vibration of the vehicle. Similarly, the bending slope of the main beam e o  is 

where 

q o T =  

$OR= 1 
qo1, qo2,  * * * 9 *Ofo bending slope functions associated with free-free modes of 

slope associated with translation mode qOT 

slope associated with rotation mode qOR 

main beam 

The slope tpOT, associated with the translation mode, is zero but it is carried along in 
the analysis for simplicity in notation. 

In like manner, the deflection of ith branch yi is expressed as the superposition of 
two rigid body modes associated with the translation and rotation of the branch as a 
whole, and the cantilever modes of the branch qil, qi2, . . . , qifi; that is, 

8 



where yo(xi, t) is the displacement of the main beam at  the attachment point x = xi of 
the branch, eo(xi, t) is the bending slope of the main beam at the attachment point, and 
qil, qi2, . . . , qif. a r e  generalized coordinates describing the participation of the 

cantilever modes in the natural mode of vibration of the vehicle. When equations (1) 
and (2) a r e  substituted into equation (3), the deflection is 

1 

n=T, R, 1 

Similiarly, the bending slope of the ith branch Bi is 

n= 1 

where qil, Gi2, . . . , +ifi a r e  the bending slope functions associated with the canti- 

lever modes of the branch. Substituting equation (2) into equation (5) gives the bending 
slope of the ith branch 

n= 1 n= 1 

After the deflection and bending slope of the main beam and branches a re  defined, the 
displacements of the swiveling engines and the sloshing masses can be defined. In the 
case of the engine, the displacement is expressed as the superposition of the motion of 
the clamped engine (the slope of the engine axis is equal to the bending slope at  the gim- 
bal point) and the vibratory motion relative to the clamped position. The displacement 
of the center of gravity of an engine is 

where yi(xei, t) is the displacement of the ith beam at the gimbal point (x = xei), Oi(xei, t) 

9 
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I I I 1  I 

is the bending slope at the gimbal point, ci is the distance from the gimbal point to the 
center of gravity of the engine, and ai is the generalized coordinate describing the an- 
gular rotation of the engine relative to the bending slope at the gimbal point. 

The displacement of the center of gravity of a rigid engine can be expressed in  
terms of the generalized coordinates by substituting either equations (1) and (2) or  equa- 
tions (4) and (6) 
main beam or a 

into equation (7), depending on whether the engine is attached to the 
branch. Therefore, for an engine on the main beam, 

while for an engine on a branch, 

n=T, R, 1 

+ Eiai(t) (i = 1, 2, . . . , k) (9) 

Following this same pattern, the angular rotation of the engine is 

Substituting equation (2) into equation (10) gives the angular rotation of an engine on the 
main beam as 

For  the case of an engine on a branch, substitute equation (6) into equation (10) 
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The displacement of the rth sloshing mass Lr can be written in terms of yo(Zr, t), 
the displacement of the main beam at the attachment point, and gr(t), the generalized 
coordinate describing the displacement of the sloshing mass relative to the attachment 
point, 

Substituting equation (1) into equation (13) gives the displacement of the rth sloshing 
mass 

n=T, R, 1 

Kinetic Energy 

The use of Lagrange's equation requires the development of the kinetic energy ex- 
pression in terms of the generalized velocities. 
masses, and engines, the kinetic energy is 

For the idealized system of beams, 

where the first te rm describes that energy associated with the lateral motion of the cen- 
refers to integration over the length of the ith beam. The second term, terline; and 

the rotary inertia term, defines the energy associated with the rotation of an infinitesi- 
mal slice with the angular velocity e .  
tion and rotation of the engine; x and 
tively. The last term is the contribution of the sloshing mass. 

(12), and (14)) with respect to time and substituting the resulting equations into equa- 
tion (15) yields a quadratic expression in the generalized velocities. Expanding this ex- 
pression and interchanging the summation and integral signs provides the following 

-( 
The following two terms result from the transla- 

are the lateral and angular velocities, respec- 

Differentiating the displacement equations (eqs. ( l ) ,  (2), (4), (6), (8), (9), ( l l ) ,  

11 



kinetic energy expression: 

f n f n 

r fo l2  

L J 

p=l n=l 
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The kinetic energy expression can be simplified by introducing the following conditions: 
(1) Conservation of linear and angular momentum for the uncoupled elastic free-free 

modes of the main beam; that is, preservation of translational and rotational 
equilibrium 

7 pAOqOndx= 0 ( n =  1, 2, . . ., fo) 

(2) Inertial orthogonality and normalization condition for the uncoupled modes of the 
branch beams as shown in appendix A 

( i = O ,  1, 2, . . ., k) 

.(pAiqinqipdx+.( P I *  i in * i p  dx = GnpELin (18) 

(n, p = 1, 2, . . . , fi) 
where 6 is the Kronecker delta defined such that 

nP 

and pin is the generalized mass of the nth uncoupled normal mode of the ith beam. 
Since the elastic modes of each branch a r e  orthogonal relative to each other, a 

number of inertial coupling terms are eliminated from the kinetic energy expression. 
Those that remain are generally easily evaluated. To simplify the remaining terms 
further, the following notation is introduced: 

J o =  f P A O x 2 d x + ~ o p I o d x  
2O 

pAi(x - xi)dx (i = 1, 2, . . . , k) 



I 111 1111 1111 I 

Qin 1, 2, . . ., k 
- - = 4 PAipin dx 

2 
Win 

where 

mO 

BO 

JO 

"i 

Bi 

Ji 

Qin 

Oin 

Min 

mass of main beam 

distance from center of gravity of system to center of gravity of main beam 

mass moment of inertia of main beam about center of gravity of system 

mass of ith branch 

distance from center of gravity of system to attachment point of ith branch 

mass moment of inertia of ith branch about attachment point 

modal shear at clamped end of ith branch in nth uncoupled cantilever mode (see 

natural frequency of nth uncoupled cantilever mode of ith branch 

modal moment at clamped end of ith branch in nth uncoupled cantilever mode (see 

fig. 3) 

fig. 3) 

t 

1.- I 

Figure 3. - Equilibrium of ith cantilever branch in sth mode. 

14 



The simplified kinetic energy expression now appears in terms of total masses, mass 
moments of inertia, natural frequencies, generalized masses, and generalized forces 
(modal shear and moment at base) of the components: 

t 



Thus far, the theoretical development has been restricted to beams; the kinetic en- 
ergy and the orthogonality conditions are those of a beam. Suppose that the branch can- 
not be represented as a beam, but rather as a spacecraft composed of trusses and dis- 
crete masses. In this case, the final kinetic energy expression (eq. (21)) is still appro- 
priate provided that the displacement can be expressed as the superposition of the trans- 
lation and rotation of the branch as a whole, and of its cantilever normal modes. The 
mass properties and displacement functions in the kinetic energy expression (eq. (15)) 
then correspond to discrete points. The energy contribution involves coupling between 
the generalized coordinates describing the motion of the main beam and the branch. The 
orthogonality conditions again prevail to eliminate cross  coupling terms between the gen- 
eralized coordinates of the branch. The remaining coupling terms a r e  simplified by ex- 
pressing them in terms of the mass and mass moment of inertia of the branch, and the 
modal shears and moments developed at the base of the branch in  the cantilever modes. 

Potent ia l  Energy  

The potential energy associated with this system of beams, engines, constraining 
springs, and sloshing masses is 

The f i rs t  term describes that strain energy associated with beam bending, and the next 
term, the shear correction term, defines the energy associated with the shear slope 

B i  - (ayi/ax). 
following two terms define the energy stored in the translational and rotational con- 
straining springs, and the last term is the energy of the sloshing spring. 

Differentiating equations (l), (2), (4), and (6), where the prime denotes differentia- 
tion with respect to x, yields 

The ensuing term includes the energy stored in the engine spring. The 

I 

i 
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fO 
-- ae 0 
ax n=T,R, 1 

fi ae 

ax n=1 
- = 

and substituting equation (23) into equation (22) yields the potential energy expression: 

+ K e o f f t + 2 {  f EXi(& n= 1 

l i  i= 1 

+ T K T j [  n=T, R, 
l2 

(24) 
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The potential energy may be simplified by introducing the following conditions: 
(1) The rigid body modes and their derivatives must not contribute to the bending 

and shear strain energy of the beams: 

(2) The stiffness orthogonality condition of the elastic uncoupled modes of the branch 
beams (appendix A) must be 

2 where 6 is the Kronecker Delta defined in equation (19), and pinwin is referred to 
as the generalized stiffness of the nth uncoupled mode of the ith beam. 

Again, the orthogonality condition, characteristic of the normal modes, proves in- 
valuable in eliminating cross coupling terms. Its merits a r e  obvious in the following 
potential energy expression, which results from substituting equations (2 5) and (26) into 
equation (24). 

nP 

U =  2 i= 0 (i n= 1 

1 
2 
- Pi 

2 2  
nuingin 

- f o  l2 
‘POn(XTj)qOn 

n=T, R, 1 

r f o  l2 

Examination of the potential energy expression reveals that the terms pertaining to 

aiq: of the quadratic, while those terms associated with the constraining 
the branch beams, swiveling engines, and sloshing masses have reduced to the canonical 
form 

springs remain aiqi . When this function is substituted into Lagrange’s equation, 

the quadratic terms will produce cross products of generalized coordinates (static cou- 
( i  >’ 

i 
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pling terms) in the equations of motion. Equation (27) reveals that static coupling is in- 
troduced only by the constraining springs, while the addition of terms for branch beams, 
swiveling engines, and sloshing masses does not result in static coupling. 

Equations of Motion 

The kinetic energy and potential energy equations ((21) and (27)) have been evaluated 
in terms of the generalized coordinates. It is now possible to introduce Lagrange's 
equation 

The application of this equation supplies the c l f c c  equations of motion, each of which cor- 
responds to a specific generalized coordinate. Because of the formidable appearance of 
the equations of motion, i t  is natural to bypass the present method of notation by the in- 
troduction of matrix notation. In matrix form, the ' ? f t c  equations of motion appear as 
follows : 

where 

[B] 

{ q } 

[A] 

Again, the complicated nature of the matrices, especially the inertia matrix, warrants 
special consideration in their presentation. Each matrix is decomposed into several 
elementary matrices, and the stiffness and inertia matrices are presented as sums of 
these matrices. 
branches, engines, sloshing masses, and constraining springs. In this manner, various 
components may be added to or removed from the system at will, so  that 

inertia matrix describing coupling of various masses of system 

column matrix of generalized coordinates 

stiffness matrix defining coupling effect of various stiffnesses of system 

The elementary matrices pertain to specific components, such as 

k 
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k 

i= 0 r 

stiffness and inertia matrices , respectively, for ith branch 

stiffness and inertia matrices, respectively, for engine on ith branch 

stiffness and inertia matrices, respectively, for rth sloshing mass 

stiffness matrices for  translational and rotational constraining springs 

( i=  0, 1, 2 . . .) 

The formation of these matrices can best be shown by an example. Consider a system 
that consists of a main beam with an  engine, two branch beams with engines, a sloshing 
mass , translational constraining springs , and rotational constraining springs. The dis- 
placement of the system is described in terms of the following generalized coordinates: 

rigid body coordinates 

three elastic coordinates of main beam 

rotation of engine on main beam 

three elastic coordinates of f i rs t  branch beam 

rotation of engine on first branch beam 

two elastic coordinates of second branch beam 

rotation of engine on second branch beam 

displacement of the sloshing mass 

9 0 ~ 7   OR 

“ 0  

“1 

92 17 922 

@2 

qO1, qO2, 903 

qll, q12, 913 

1 
The position of the generalized coordinates in the column matrix is the same as the list 
just given; for example, the transpose of the column matrix appears as 

The general procedure for  the placement of the generalized coordinates in the column 
matrix is the same as stated previously; rigid body coordinates (qOT, qOK), main beam 
and engine coordinates (q 017 qO2, . . . , qofo7 ao), branch beam and engine coordinates 

matrices are now presented. 
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Main beam. - For the main beam, the stiffness and mass matrices a re  

~ 

‘OT 

0 

mO 

mOBO 

~ 

‘OR 

0 

moB0 

JO 

% I 

2 
1-10lWO1 

2 
1-102O02 

2 
p03w03 

Po1 

1-102 

03 

0 

0 

2 1  



Engine on main beam. - With an engine on the main beam, the stiffness and mass 
matrices a r e  

0 
0 

0 
0 

0 

0 

+ Jeo 

LTranspose of column matrix] - 
901 

901 
902 

@O 
911 

qOF 

903 

LTranspose of column matr ix]  
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Main beam. - For the main beam, the stiffness and mass matrices are 

I ‘OT 

- 
0 

- 

mO 

mOBO 

- 

‘OR ‘01 ‘02 ‘03 

0 

2 
I-10lWO1 

2 
I-102W02 

2 
p03W03 

0 

mOBO 

JO 

lJ.01 

P o 2  

03 

0 

21 

L 



Engine on main beam. - With an engine on the main beam, the stiffness and mass 
matrices are 

0 
0 

0 
0 

0 

0 I 
1 

[Be01 = me0 

0 

+ Jeo 
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are 
First branch beam. - For the first branch beam, the stiffness and mass matrices 'h 

+ 

0 
0 

0 
0 

0 
2 

P1lW11 
2 

IJ. 12w 12 
2 

EL 13w 13 
0 

0 
0 

0 
0 

0 

1j-11 

lJ- 12 

13 
0 

0 

90T 

901 
902 

"0 

qOR 

903 

0 - 
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+ ml 

+ m l B l  

+ J1 

0 Iji 1 

- 
‘0T 
90R 
90 1 
902 

“0 
‘03 

5 

I- 4 
e 

j 
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0 

-Q11 

O11 

-Q12 

2 

2 

-Q13 

w12 

I 90T 90R 901 902 903 “0 911 912 913 . 911 

1 ’  

2 
13 

0 .  

0 0 0 0 o - - - .  M1l  M12 M13 . . 
2 2 2  

wl l  O12 w13 

- 
qOT 

91 1 

912 

913 

5 

912 

913 

- 
‘0T 
90R 
901 
902 

“0 
903 

2 5  
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Engine on first  branch beam. - For an engine on the branch beam, the stiffness and 
mass matrices a r e  

1'0" 'OR '01 '02 903 "0 911 912 913 "1 921 922 "2 911 

0 
0 

0 
0 

'F?. 

0 
0 

0 
0 

ke 1 0 
0 

0 
0 1 
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Second branch beam. - For the second branch, the stiffness and mass matrices a re  

1 

0 

0 

I ‘0T cyl 921 922 O2 91 I 
0 

I * *  0 
2 

P21W21 
2 

p22w22 
0 

0 

p2  1 

p22 

0 i 
O l  i o  w21 w22 

. o - -  -Q21 -Q22 
2 2 
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+ m2 

+ mZB2 

+ m2B2 

+ J2 
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I ‘0T ‘OR q O 1  ‘02 903 ’ ’ 91 I 
x2 0 . . .  O l  

0 

0 

- 
‘0T 
‘OR 
90 1 
902 

f f O  
903 

-E”1 
- 
90T 
‘OR 
901 
902 

“0 
903 

5 
- 
90T 
90R 
901 
902 

“0 
903 

- 
‘0T 
90R 
90 1 
902 

“0 
903 

..I 



0 

+ 9; 0 

I ‘0T 90R 901 902 903 aO ‘ ’ ‘ % 1 
P 

- 
90T 

92 1 

922 

cu2 
% 

1‘0T ’ @ 1  921 922 cu2 911 

O J  L *21 *22 

1 M22 0 . . .  0 - -  0 
2 2 

c 

92 1 

922 

a2 
9 1  - 

qOT 
qOR 
901 
902 

f f O  
903 

9 1  - 
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Engine on second branch beam. - For an engine on the branch beam, the stiffness 
and mass matrices a r e  

F T  ‘OR ‘01 ‘02 903 @O 911 912 q13 @1 921 q22 @2 .E”1 I 
- 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

+ Je2 - 

LTranspose of column matrix J 1 
92 1 

LTranspose of column matrix J 
- 
‘0T 
90R 
90 1 
902 

@O 
903 

92 1 
92 2 
@2 5 
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